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Random sequential adsorption �RSA�, on a two-dimensional continuum substrate, of different types of zero
area objects that disallow domain formation and hence lead to jamming, is examined by simulation. In all the
cases, in the asymptotic time regime, the approach of the number density ��t� at instant t to jamming density
���� is found to exhibit power law ����−��t�� t−p as that for RSA of finite area objects. These results suggest
the possibility of the power law being universal for all jamming systems in RSA on a continuum substrate. A
generalized analytical treatment is also proposed.
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Over the past two decades considerable scientific effort
has been devoted to the understanding of the random sequen-
tial adsorption �RSA� process in view of its known signifi-
cance in the context of a wide variety of deposition processes
involving species ranging from pointlike particles to protein-
like complex structures in physical, chemical, and biological
systems �1�. In this model, objects are added one by one onto
a substrate without overlapping with others. Any event re-
sulting in an overlap causes the object to be rejected while
the nonoverlapping objects are rigidly fixed to the substrate.
The RSA models are broadly classified into continuum and
lattice models on the basis of the substrate and are also char-
acterized by the object type, either of nonzero �finite� area or
zero area �2�. The main focus of this research is the nature of
approach to the jammed state, it being a matter of signifi-
cance and interest to both science and applications. It can be
easily appreciated that objects with finite area must eventu-
ally lead to a jammed state and a large number of studies
about RSA of such objects with different shapes have been
reported. However, it is equally interesting to point out that
even objects with zero area can lead to jamming under cer-
tain circumstances even on a continuum substrate; an issue
that appears to have been completely overlooked in the lit-
erature. In this work we not only address this issue compu-
tationally but also provide analytical insights implying a uni-
versal behavior in the form of power law approach to the
jammed state.

For RSA of objects with nonzero �finite� area on a con-
tinuum substrate, the already adsorbed objects occupy an
area on the substrate and cause blocking of some of the area
available for new additions, and this leads to a jammed state.
The approach of ��t�, the fraction of the total substrate area
covered by the adsorbed objects at instant t, to the jamming
coverage ���� is a matter of considerable interest. Previous
studies by various researchers show that for any type of ob-
ject this approach follows a power law ����−��t�� t−p, al-
though object shape has significant influence on the ����
and p values �3,4�.

In the case of zero area objects, the RSA of the line seg-
ments �hard rods or needles� is the only system studied quite
extensively. Sherwood �5� has studied the RSA of needles on
a two-dimensional �2D� continuum substrate analytically as
well as by simulation and found that the number density ��t�
increases indefinitely with time and follows the kinetics
��t�� tp with p=1/3 in the late time regime. Later, Tarjus
and Viot �6� gave more rigorous analytical treatment to ob-
tain p=�2−1. The analysis in both the works is based on the
fact that there is formation of domains where the needles are
arranged almost parallel to each other. In the asymptotic time
regime, although the kinetics get slower, there is always a
chance that an object can get accepted if its position lies
within a domain and the orientation matches with that of the
domain. Later, Khandkar et al. �7� studied RSA of yet an-
other zero area object, namely, symmetric angled objects on
a continuum substrate for the full range �0°–180°� of values
of the arm angle �. The value of the exponent was found to
be significantly lower in the case of angled objects than that
for needles, with a crossover near �=0° or 180°. The results
highlighted the important role of the intradomain spaces.
Since these are the only systems studied so far, there is an
impression that in RSA of zero area objects there is no jam-
ming. However, even for zero area objects there are object
types, which can disallow domain formation and lead to jam-
ming. We address RSA of such unique objects in this work.
To our knowledge, this problem has not been previously ad-
dressed. The different objects studied are �1� star-shaped ob-
ject with n congruent �of equal length l� arms with uniform
angular separation, �2� bracket-shaped object with end arms
of length l� making an angle � ���90° � with the central arm
of length l, and �3� circular arc object of radius l and arc
angle � ���180° � as shown in the insets of Fig. 1. These
objects are specifically chosen to represent different catego-
ries: The star-shaped object is a branched one and cannot be
generated by self-avoiding random walk �SARW� while the
bracket-shaped object can be generated by SARW. The cir-
cular arc object is an unbranched smooth curve.

In each simulation a 2D continuum substrate of size L
�L is taken. The objects are dropped one by one per unit*avl@physics.unipune.ernet.in
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time on the substrate. The orientation of the objects and the
position of point O, referred to as the center of the object, are
chosen randomly on the substrate so that the object lies
wholly on the substrate. If any part of the newly arriving
object intersects with any of the parts of the previously ad-
sorbed objects, it is discarded, otherwise it is accepted. In
either case, the time is incremented by one unit before the
next adsorption attempt. For all three types of objects, l was
taken to be l=L /100 in order to minimize the finite size
effects. Runs were also carried for l=L /50 to check for the
size dependence but no significant dependence was ob-
served. Each simulation is carried out up to t=3�108 time
steps and the results presented below are the average of 50
simulation runs.

In the case of a star-shaped object, n was taken to be n
=3. The bracket-shaped object considered was with l�= l /2
and �=60°. The circular arc object had the arc angle �
=270°.

Figure 1 shows snapshots of typical late time regime con-
figurations of RSA of the three object types. It can be clearly
seen that for all types of objects there is no domain forma-
tion.

In Fig. 2 the number density ��t� is plotted against time t.
In the initial time regime, ��t� increases rapidly with time
since the substrate area available for adsorption is substan-
tially higher than that blocked by the adsorbed objects. The
depletion of the available area with every new addition even-
tually leads to the jammed state.

The plots of d� /dt versus t on a log-log scale are shown
as insets of Fig. 2 for the three types of objects. Extremely
good linear fits to the simulation data over four to five orders
of magnitude on both the scales confirms beyond any doubt

that the number density ��t�, in the asymptotic time regime,
reaches the jamming density ���� as a power law ����
−��t�� t−p in all the cases similar to that for RSA of finite
area objects of different shapes. The average values of expo-
nent p were found to be 0.27±0.02, 0.13±0.02, and
0.19±0.02 for star-shaped, bracket-shaped, and circular arc
objects, respectively. Investigations were also carried out
with wide variations in object parameter values in all three
types of objects. It was found that the power law behavior is
always followed, though the value of the exponent is param-
eter dependent. Hence, all of these results make one wonder
about the possibility of power law behavior being universal.
In the following analysis we establish that this indeed is the
case.

In the case of hard circular disks it was first conjectured
by Feder �8� and later proved by Pomeau �9� and Swendsen
�3� that the coverage follows the law ����−��t�� t−p with
p=1/2. Their analysis is based on the exclusion of area of
radius 2r around each disc of radius r for selecting the center
of the newly arriving disc. After a certain time tc character-
izing the beginning of the asymptotic regime, the area that is
available to the center of a new disc consists of isolated
targets: small disconnected areas that can be occupied by
only one additional disc �Fig. 3�a��.

For a typical target, having linear dimension h, the area
available for the disc getting newly added goes as h2. Thus
the rate of disappearance of such a target is proportional to
h2 and as a consequence the number density n�h , t� of targets
characterized by linear size h at instant t decays exponen-
tially in time according to n�h , t�=n�h , tc�e−kAh2�t−tc�, k being
the rate of deposition and A is a mean shape factor. It has
been further assumed that the density of targets n�h , tc�
goes to a nonzero constant n�0, tc�, when h goes to zero.
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FIG. 1. Snapshot of typical configurations of RSA of �a� 3-star-
shaped, �b� bracket-shaped, and �c� circular arc objects on a 2D
continuum substrate. The inset in each case shows the details of the
object.
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FIG. 2. Plot of number density ��t� against time t for �a� 3-star-shaped, �b� bracket-shaped, and �c� circular arc objects on a 2D continuum
substrate. The inset in each graph shows the plot of d� /dt against time t on a log-log scale with linear fit in the late time regime.

FIG. 3. Representative target for �a� circular disks and �b� 3-star-
shaped objects. From �b� it is clear that only certain orientations are
allowed for the object with its center in the target area.
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This then leads to a power law ����−��t�=�0
hcdhn�h , t�

�n�0, tc��0
hcdhe−kAh2t� t−1/2, in asymptotic time regime. For

elongated objects such as ellipses, these arguments were ex-
tended by Talbot et al. �4� to explain the observed power law
behavior ����−��t�= t−1/3. In this case, it has been argued
that the rate of disappearance of the targets must be propor-
tional to h3, since it seems reasonable that the range of avail-
able orientations goes to zero as h. Regarding the density of
targets, they followed the same assumption that it goes to a
constant when h goes to zero.

Later Viot et al. �10� studied the RSA of unoriented an-
isotropic objects on a 2D continuum substrate simulationally
and analytically for various shapes �spherocylinders, ellipses,
and rectangles� and elongations. Their analytical treatment

leads to the equation �	���−�	�t��	� �0
xdxe−x3

z1/3 +c e−z

z1/2
�, where

z=	2t, 	 is a parameter of anisotropy and c
0. This equa-
tion implies t−1/2 law for isotropic objects �	→0� and t−1/3

for strongly elongated objects. For weakly elongated objects
one gets a mixture of t−1/2 and t−1/3 regimes that leads to an
effective exponent intermediately between the bounds 1/3
and 1/2.

As seen in our simulations, the exponents in all the three
cases are significantly lower than the lower bound 1/3 and
are also seen to be highly sensitive to the shape of the object.
The analysis by Viot et al. hence cannot be applied here to
analyze our results. Nevertheless, all these systems leading to
the jammed state in RSA on a continuum substrate follow
power law behavior. Also, it is interesting to note that even
for objects with zero area, each adsorbed object blocks some
area of the substrate for the position of the center of the
newly arriving object. With advancement of time, such
blocking continues to increase and a critical time tc is
reached when the substrate area consists of isolated targets
�for instance, Fig. 3�b� shows one such target area in the case
of RSA of 3-star objects�. The feature that the asymptotic
regime is characterized by isolated targets due to the pres-
ence of exclusion areas around adsorbed objects is thus com-
mon to all of these systems. The classical arguments pro-
posed by Pomeau and Swendsen and extended by Talbot
et al., hence, can be generalized to accommodate the systems
studied in this paper.

Consider one such isolated target. Consider a point �x ,y�
lying in the area a of this target. The probability that the
center of the newly arriving object will be in the small area
element dxdy around this position is dxdy /L2. The object
having orientation from certain subintervals of the angular
interval �0-2�� allows it to satisfy no overlap condition and
eliminates the targets upon adsorption. Let ��x ,y� be the
cumulative spread of these subintervals. Then, the probabil-
ity that the fallen object in this area element gets adsorbed is
��x ,y� /2�. The probability w �the weight associated with
the target� that this target disappears in unit time is hence
given by /area of the target��x ,y�dxdy /2�L2.

The weight w of the target depends upon its linear size h.
As mentioned earlier, in the case of RSA of circular discs,
w�h� scales as h2, while for elliptical objects, Talbot et al.
argued that w�h��h3. However, with the complicated shape
of objects, the shapes of the isolated targets are equally com-

plex. This makes it difficult to know how the range of orien-
tation scales with h. It is hence reasonable to generalize the
assumption and to consider w�h�=Ah
, where 
 is a positive
real number.

We also generalize the treatment in another aspect. In
both of the previous works on RSA of circular discs and
ellipses, the authors �3,4� make the assumption that the den-
sity of targets n�h , tc� goes to a constant n�0, tc� when h goes
to zero. Noting that this assumption is hard to justify and
also due to the fact that the targets in our case could be of
complex nature, we generalize the assumption and consider
that the density of targets n�h , tc� goes as h−1+�, where � is a
positive number ��=1 corresponds to classical assumption
done by Swendsen and Talbot et al.�.

The rate of disappearance of any target of linear size h is
now given by the product of its weight w�h�=Ah
, the den-
sity of targets n�h , t�, and the rate of deposition k, i.e.,

dn�h,t�
dt

= − kAh
n�h,t� .

As a consequence, the density of targets n�h , t� decays
exponentially in time according to

n�h,t� = n�h,tc�e−kAh
�t−tc�.

The total number of targets at any instant t�t
 tc� will be
�0

hmaxn�h , t�dh, where hmax is the maximum of the linear sizes
of the targets present at that instant.

Hence, ����−��t�=�0
hmaxn�h , tc�e−kAh
�t−tc�dh and

with n�h , tc��h�−1+��, one gets ����−��t�
��0

hmaxh�−1+��e−kAh
�t−tc�dh��0
�h�−1+��e−kAh
�t−tc�dh.

Defining kAh
�t− tc�=g, one gets ����−��t�� 1

 �kA

��t− tc��−�/
�0
�g��−
�/
e−gdg�����−��t���t− tc�−�/
��t�−p,

where p=� /
, in the asymptotic regime.
The power law approach to the jammed state thus gets

established also for the zero area objects disallowing the do-
main formation through this generalized analytical treatment.

The positive real numbers 
 and �, besides determining
the rate of increase of the number density of adsorbed ob-
jects, also contain significant information about the nature of
the isolated targets. While 
 tells how the weight of the
target scales with its linear size, � gives the size distribution
of those targets. In view of this, knowledge of the values of

 and � for any given system gives good insight about the
nature of the isolated targets for that system. Hence, in order
to analyze the same, we employ Monte Carlo simulations
and find the weight and size of each of the isolated targets
present at a certain time t, beyond tc, as follows.

In an ongoing RSA simulation run, after a sufficiently
long time t�t
 tc�, whenever the object gets successfully ad-
sorbed at a certain �x ,y� position on the substrate, it is clear
that this position is in the area of one of the isolated targets.
The area a of this target �and hence the linear size h� and its
associated weight w are obtained by carrying out Monte
Carlo integrations: We temporarily remove this newly added
object and carry out a large number of adsorption trials N
�N=NpNo, where Np=104 is the number of trials for positions
within the area 2l�2l around the point �x ,y� and No=3600
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is the number of orientations for each trial position� with the
test object. Let Nps be the total number of trial positions
having at least one successful adsorption attempt for some
orientation and Ns be the total number of successful trials.
The area of the target and its associated weight are given by
a= �Nps /Np��4�l /L�2 and w= �Ns /N��4�l /L�2, respectively.
In this fashion we get the information about all the targets.

Figure 4 shows a log-log plot of w�h� versus h for the
three types of objects. A good linear fit in all of the cases
validates the assumption w�h�=Ah
. The average values of 

for the star-shaped object, bracket-shaped object, and circu-
lar arc object are 2.67±0.05, 2.60±0.07, and 2.32±0.03, re-
spectively.

If one wants to obtain the values of � one must carry out
Monte Carlo integrations at the instant tc, where catching the
instant tc is almost impossible. However, one can obtain the
� value from the known value of exponent p and the 
 value
for that system. The � values so obtained are 0.72, 0.34, and
0.44 for the star-shaped object, bracket-shaped object, and
circular arc object, respectively.

It can be immediately noticed that the 
 values for star-
shaped and bracket-shaped objects are the same within the
error limits. However, the values of the exponent p are sig-
nificantly different in the two cases. This clearly highlights
the crucial role of the � value, i.e., the size distribution of the
targets in the RSA dynamics. Due to the assumption that the
number density n�h , tc� goes to a constant n�0, tc� when h
goes to zero, this finding remained unrevealed.

In conclusion, we have studied RSA on a 2D continuum
substrate of a new class of zero area objects, which disallow
the domain formation and hence lead to a jammed state con-
figuration as for the case of finite area objects. We show that
for all such systems the number density ��t� at instant t ap-
proaches the jamming density ���� as a power law ����
−��t�� t−p, as that for RSA of the finite area objects. The
exponent p is found to be sensitive to the object specifics.
However, interestingly, the feature that the asymptotic re-
gime is characterized by isolated targets due to the presence
of exclusion areas around adsorbed objects is common to
both finite area objects and the zero area objects that disallow
the domain formation. This fact renders the universal behav-
ior of a power law approach in the asymptotic time regime to
all of the RSA systems irrespective of the object types
therein. Generalization of the analytical treatment applied in
the case of finite area objects is also proposed to accommo-
date zero area objects. This treatment reveals the crucial role
of the distribution of the density of targets in the RSA dy-
namics.
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FIG. 4. Plot of target weight w�h� against target size h for �a� 3-star-shaped, �b� bracket-shaped, and �c� circular arc objects, on a log-log
scale. The slope of the linear fit gives the value of 
 in each case.
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